Latest News

NASA Funds Research on 18 Game-Changing Space Technologies

By Jeffrey Hill | April 11, 2019

Photo: NASA

NASA will fund research and development for 18 space technology concepts, including solar sails, smart space suits, and a Lunar-polar propellant mining outpost, as part of the NASA Innovative Advanced Concepts (NIAC) program. The developers of each of these technologies will use the funds to determine the feasibility of their innovations and ability to change the way we access and explore space.

The NIAC selections include Phase I and Phase II awards. The Phase I awards are valued at approximately $125,000, helping researchers define and analyze their proposed concepts over nine months. If the initial feasibility studies are successful, awardees can apply for Phase II awards. Awards under Phase II can be worth as much as $500,000 for two-year studies.

“Our NIAC program nurtures visionary ideas that could transform future NASA missions by investing in revolutionary technologies,” said Jim Reuter, acting associate administrator of NASA’s Space Technology Mission Directorate, in a statement. “We look to America’s innovators to help us push the boundaries of space exploration with new technology.”

The new Phase I selections are:

Bioinspired Ray for Extreme Environments and Zonal Exploration (BREEZE): Combines inflatable structures with bio-inspired kinematics to explore and study the atmosphere of Venus
Javid BayandorState University of New York, Buffalo

Power Beaming for Long Life Venus Surface Missions: New approach to support a Venus surface mission with power beaming
Erik Brandon, NASA’s Jet Propulsion Laboratory (JPL), Pasadena, California

SmartSuit: An intelligent spacesuit design with soft-robotics, self-healing skin and data collection for extravehicular activity in extreme environments that allows for greater mobility for exploration missions
Ana Diaz Artiles, Texas A&M Engineering Experiment Station, College Station

Dual Use Exoplanet Telescope (DUET): A novel telescope design to find and characterize planetary systems outside the solar system
Tom Ditto, 3DeWitt LLC, Ancramdale, New York

Micro-Probes Propelled and Powered by Planetary Atmospheric Electricity (MP4AE): Similar to the ballooning capabilities of spiders, these floating microprobes use electrostatic lift to study planetary atmospheres
Yu GuWest Virginia University, Morgantown

Swarm-Probe Enabled ATEG Reactor (SPEAR) Probe: An ultra-lightweight nuclear electric propulsion probe for deep space exploration, designed to keep mass and volume low for commercial launch
Troy Howe, Howe Industries LLC, Tempe, Arizona

Ripcord Innovative Power System (RIPS)An investigation of a drag using ripcord unspooling power system for descent probes into planets with atmospheres, such as Saturn
Noam IzenbergJohns Hopkins UniversityLaurel, Maryland

Power for Interstellar Fly-by: Power harvesting from ultra-miniature probes to enable interstellar missions
Geoffrey Landis, NASA’s Glenn Research Center, Cleveland

Lunar-polar Propellant Mining Outpost (LPMO): Affordable lunar pole ice mining for propellant production
Joel Serce, TransAstra Corporation, Lake View Terrace, California

Crosscutting High Apogee Refueling Orbital Navigator (CHARON)Novel system for small space debris mitigation
John Slough, MSNW LLC, Redmond, Washington

Thermal Mining of Ices on Cold Solar System Bodies: Proposes using a unique heat application on frozen volatiles and other materials for resource extraction
George SowersColorado School of Mines, Golden

Low-Cost SmallSats to Explore to Our Solar System’s Boundaries: A design for a low-cost, small satellite heliophysics mission to the outer solar system
Robert Staehle, JPL

The 2019 Phase II selections are:

The High Étendue Multiple Object Spectrographic Telescope (THE MOST): A new, flexible optical telescope design that can be a deployed in a cylindrical roll and installed upon delivery, on a 3D printed structure
Tom Ditto, 3DeWitt LLC, Ancramdale, New York

Rotary-Motion-Extended Array Synthesis (R-MXAS): A geostationary synthetic aperture imaging radiometer with a rotating tethered antenna
John Kendra, Leidos, Inc., Reston, Virginia

Self-Guided Beamed Propulsion for Breakthrough Interstellar Missions: An effort to advance self-guided beamed propulsion technology
Chris Limbach, Texas A&M Engineering Experiment Station, College Station

Astrophysics and Technical Lab Studies of a Solar Neutrino Spacecraft Detector: A small-scale neutrino detector study to advance detector technology for future probe missions
Nickolas SolomeyWichita State UniversityKansas

Diffractive LightSails: A study to design and advance passive and electro-optically active diffractive films for missions in low-Earth orbit, inner solar orbits and to distant stars
Grover SwartzlanderRochester Institute of TechnologyNew York

Solar Surfing: A materials-science study to determine the best protective materials to enable heliophysics missions closer to the Sun
Doug Willard, NASA’s Kennedy Space CenterCape Canaveral, Florida

NASA selected Phase I and II proposals through a peer-review process that evaluates innovativeness and technical viability. All projects are still in the early stages of development, most requiring a decade or more of concept maturation and technology development.

For the first time this summer, the NIAC program will select one Phase III research study. The award will be up to $2 million for as long as two years. This final phase is designed to strategically transition a NIAC concept with the highest potential impact to NASA, other government agencies or commercial companies.

“NIAC is about going to the edge of science fiction, but not over,” said Jason Derleth, NIAC program executive. “We are supporting high impact technology concepts that could change how we explore within the solar system and beyond.”

NIAC partners with forward-thinking scientists, engineers and citizen inventors from across the nation to help maintain America’s leadership in aeronautics and space research. NIAC is funded by NASA’s Space Technology Mission Directorate, which is responsible for developing the cross-cutting, pioneering new technologies and capabilities needed by the agency to achieve its current and future missions.